Читать онлайн учебники
на as6400825.ru

Физика
Учебник 11 класса

       

§ 5.4. Излучение электромагнитных волн

  • Электромагнитная волна образуется благодаря взаимной связи переменных электрических и магнитных полей: изменение одного поля приводит к появлению другого. Чем быстрее меняется со временем магнитная индукция, тем больше напряженность возникающего электпрического поля. И в свою очередь, чем быстрее меняется напряженность электрического поля, тем больше магнитная индукция. Следоват.ельно, для образования интенсивных электромагнитных волн необходимо создать электромагнитные колебания достаточно высокой частоты. При этом условии напряж:енность электрического поля и индукция магнитного поля будут меняться быстро.

Вибратор Герца

Колебания высокой частоты, значительно превышающей частоту промышленного тока (50 Гц), можно получить с помощью колебательного контура. Частота колебаний будет тем больше, чем меньше индуктивность и емкость контура.

Однако большая частота электромагнитных колебаний еще не гарантирует интенсивного излучения электромагнитных волн. В своих опытах для получения электромагнитных волн Герц использовал простое устройство, называемое сейчас вибратором Герца. Это устройство представляет собой открытый колебательный контур. Обычный колебательный контур, какой изображен на рисунке 5.7, а (его можно назвать закрытым), не приспособлен для излучения электромагнитных волн.

Рис. 5.7

Дело в том, что его переменное электрическое поле сосредоточено преимущественно в очень малой области пространства между обкладками конденсатора, а магнитное — внутри катушки. Чтобы излучение электромагнитных волн было достаточно интенсивным, область переменного электромагнитного поля должна быть велика и не огорожена металлическими пластинами. Здесь имеется сходство с излучением звуковых волн. Колеблющаяся струна или камертон без резонаторного ящика почти не излучают, так как в этом случае колебания воздуха возбуждаются в очень малой области пространства, непосредственно примыкающей к струне или ветвям камертона.

Область, в которой создается переменное электрическое поле, увеличивается, если раздвигать пластины конденсатора. Емкость при этом уменьшается. Одновременное уменьшение площади пластин еще больше уменьшит емкость (рис. 5.7, б). Уменьшение же емкости увеличит собственную частоту этого колебательного контура. Для еще большего увеличения частоты нужно заменить катушку прямым проводом без витков. Индуктивность прямого провода гораздо меньше индуктивности катушки. Продолжая раздвигать пластины и уменьшая одновременно их размеры, мы придем к открытому колебательному контуру. Это просто прямой провод (рис. 5.7, в). В открытом контуре заряды не сосредоточены на концах, а распределены по всему проводнику. Ток в данный момент времени во всех сечениях проводника направлен в одну и ту же сторону, но сила тока не одинакова в различных сечениях проводника. На концах она равна нулю, а посредине достигает максимума. (Напомним, что в обычных цепях переменного тока сила тока во всех сечениях в данный момент времени одинакова.)

Для возбуждения колебаний в таком контуре нужно провод разрезать посредине так, чтобы остался небольшой воздушный промежуток, называемый искровым (рис. 5.8, а). Благодаря этому промежутку можно зарядить оба проводника до высокой разности потенциалов. Когда разность потенциалов превысит некоторое предельное значение, проскакивает искра, цепь замыкается и в открытом контуре возникают колебания (рис. 5.8, б).

Рис. 5.8

Из-за малой емкости и индуктивности частота колебаний очень велика. Колебания, разумеется, будут затухающими по двум причинам: во-первых, вследствие наличия у вибратора активного сопротивления, которое особенно велико в искровом промежутке; во-вторых, из-за того, что вибратор излучает электромагнитные волны и теряет при этом энергию. После того как колебания прекратятся, источник вновь заряжает оба проводника до наступления пробоя искрового промежутка и все повторяется сначала (рис. 5.9).

Рис. 5.9

В настоящее время для получения незатухающих колебаний в открытом колебательном контуре его связывают индуктивно с колебательным контуром генератора на транзисторе или лампового генератора.

Опыты Герца

Герц получил электромагнитные волны, возбуждая в вибраторе с помощью источника высокого напряжения серию импульсов быстропеременного тока. Колебания электрических зарядов в вибраторе создают электромагнитную волну. Только колебания в вибраторе совершает не одна заряженная частица, а огромное число электронов, движущихся согласованно.

В электромагнитной волне векторы и перпендикулярны друг другу, причем вектор лежит в плоскости, проходящей через вибратор, а вектор перпендикулярен этой плоскости. На рисунке 5.10 показаны линии напряженности электрического и индукции магнитного полей вокруг вибратора в фиксированный момент времени: в горизонтальной плоскости расположены линии индукции магнитного поля, а в вертикальной — линии напряженности электрического поля. Излучение волн происходит с максимальной интенсивностью в направлении, перпендикулярном оси вибратора*. Вдоль оси излучения не происходит.

Рис. 5.10

Электромагнитные волны регистрировались Герцем с помощью приемного вибратора, представляющего собой такое же устройство, как и излучающий вибратор. Под действием переменного электрического поля электромагнитной волны в приемном вибраторе возбуждаются колебания тока. Если собственная частота приемного вибратора совпадает с частотой электромагнитной волны, наблюдается резонанс и колебания в приемном вибраторе происходят с большой амплитудой. Герц обнаруживал их, наблюдая искорки в очень маленьком промежутке между проводниками приемного вибратора.

Герц Генрих (1857—1894) — немецкий физик, впервые экспериментально доказавший в 1886 г. существование электромагнитных волн. Исследуя электромагнитные волны, Герц установил тождественность основных свойств электромагнитных и световых волн. Работы Герца послужили экспериментальным доказательством справедливости теории электромагнитного поля и, в частности, электромагнитной теории света. Уравнения Максвелла в современной форме были записаны Герцем. В 1886 г. Герц впервые наблюдал фотоэффект.

Герц не только получил электромагнитные волны, но и обнаружил, что они ведут себя подобно другим видам волн. В частности, он наблюдал отражение электромагнитных волн от металлического листа и интерференцию волн. При сложении волны, идущей от вибратора, с волной, отраженной от металлического листа, образуется стоячая волна. Перемещая приемный вибратор, можно найти положение пучностей стоячей волны и определить длину волны. Длина волны равна удвоенному расстоянию между пучностями.

Скорость распространения электромагнитных волн

В опытах Герца длина волны составляла несколько десятков сантиметров. Вычислив собственную частоту электромагнитных колебаний вибратора. Герц смог определить скорость электромагнитной волны по формуле υ = λv. Она оказалась равной скорости света с = 300 000 км/с.

Опыты Герца блестяще подтвердили теоретические предсказания Максвелла.


* Сопоставьте графическое изображение электромагнитной волны на рисунках 5.10 и 5.6.

Рейтинг@Mail.ru
Рейтинг@Mail.ru